

J-003-1161001-N

Seat No. _____

M. Sc. (Sem. I) Examination

January - 2020

Mathematics: CMT-1001

(Algebra - I)

Faculty Code: 003

Subject Code: 1161001-N

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All questions are compulsory.

(2) Each question carries 14 marks.

1 Answer any seven short questions:

 $7 \times 2 = 14$

(i) Define order of an element g in a group G. In standard

notation
$$A_3 = \left\{ \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \right\}$$
, write

down order of element $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$ in A_3 .

- (ii) For a group G, prove that G has only one identity in it.
- (iii) Prove or disprove, the set of all units of $\mathbb{Z}_{10}\left[U(\mathbb{Z}_{10})\right]$ is a cyclic group under multiplication.
- (iv) Write down two generators of the group $(\mathbb{Z}_{10}, +_{10})$.
- (v) Define center of a group G i.e. Z(G).
- (vi) Give definition of a cyclic group. Write down two generators of the cyclic group $(\mathbb{Z}, +)$.

- (vii) Define terms: Isomorphism of groups and automorphism.
- (viii) Give statement of Sylow's first theorem.
- (ix) Give an example of a non-commutative ring.
- (x) Define terms: Zero divisor and Integral domain.

2 Attempt any two:

 $2 \times 7 = 14$

- (a) In standard notation prove that Z(G) is a normal subgroup of G, where G is a group.
- (b) Let G be a group and H, K be two subgroups of G. Let $HK = \{hk \mid h \in H, k \in K\}$. Prove that HK is a subgroup of G if and only if HK = KH.
- (c) Let H be a non-empty finite subset of a group G and $ab \in H$, $\forall a, b \in H$. Prove that H is a subgroup of G.

3 Attempt following both:

 $2 \times 7 = 14$

- (a) Let G be an abelian group and $H = \{x \in G \mid x^2 = e\}$, $K = \{x^2 \mid x \in G\}$. Prove that H and K both are subgroup of G.
- (b) Prove that every finite group G is isomorphic to a permutation group (a subgroup of S_G).

OR

3 Attempt following both:

 $2 \times 7 = 14$

- (a) Give definition of a field. Give an example of a field. Also prove that a finite Integral domain is always a field.
- (b) Prove that \mathbb{Z}_p is a field, where p is a prime. Give definition of an ideal of a ring R. Write down number of ideals of \mathbb{Z}_p .

4 Attempt any two:

 $2 \times 7 = 14$

- (a) Let G and G' be two groups and $\phi: G \to G'$ be a group homomorphism. In standard notation prove that, $G/Ker \phi \cong I_m(\phi)$ as subgroup of G', where $I_m(\phi) = \{\phi(g) | g \in G\}$.
- (b) Let G be a group and $I_n(G) = \{i_g : G \to G \text{ defined by } i_g(x) = g \times g^{-1}, \forall x \in G/g \in G\}$. Prove that i_g is an automorphism on G. Also prove that $I_n(G)$ is a subgroup of Aut(G), where Aut(G) is the set of all automorphisms of G.
- (c) (i) Let G be a group and $g^2 = e$, $\forall g \in G$. Prove that G is an abelian group.
 - (ii) Let G be an abelian group. Prove that $(ab)^n = a^n b^n$, 4 $\forall a, b \in G \text{ and } \forall n \in \mathbb{N}.$

5 Attempt any two:

 $2 \times 7 = 14$

- (a) Let H, N be two subgroups of a group G and N is a normal subgroup of G. In standard notation prove that $\frac{HN}{N} \simeq \frac{H}{H \cap \dot{N}}$ as group.
- (b) Let H, K be two Sylow p-subgroups of a finite group G. We define a relation " \sim " on G as follows: For any $g_1, g_2 \in G$, we say $g_1 \sim g_2$ if $g_2 = a g_1 b$, for some $a \in H$ and $b \in K$. Prove that " \sim " is an equivalence relation on G.

- (c) Let R be a commutative ring with unity and M be an ideal of R. Prove that M is maximal ideal of $R \Leftrightarrow R/M$ is a field.
- (d) State and prove third isomorphism theorem. (Third Fundamental Theorem) of group theory.

J-003-1161001-N]